@/‘ INDIA'S Finest

JOB GUARANTEED

@ PYTHON
BOOTCAMP

For Fresh Graduates
&
For Experienced Professionals /

By our Lead Faculty

Khaja

Sr. cloud Architect

India’s best full stack python boot program from |hub offer you
everything you need to become a master and to grab a job

OualltyThog{ght

Learn from Industry Ex

GualityThought”

Python Developer
Placement Program

How fo land as Python Developer
(Industry Expectations)

Daroiozing Mathan Appe o0
1 1 = T]
! L O s |
o Bnen E el o A % i
A
Hetvdthen | = Bython angz St 4]
P % riywerige of ke L
5 p 2
? 3 i
2 2 &

K L) _
7 L //
Full Stack Python Developer
g P ¢
i § i
I o i
s
ﬁ- ekt s | & E
LegaaThinidag 5 iy i mpemerg AT |
F Wil -
B R
&
= /

i e 1

Tebuggng Ekren etf R

5 PythanCgnen Sl AM |

J 1K

rodiam Saking 3 f mtn e |
i

Wiz |

This Placement Program fills the gaps
required to make you
the Successful
Python Develop.er

aiml@qualitythought.in

GualityThought”

PR g

situation and zeros in on

PR []F E IEN the accurate region of
the problem
Perceives situations as
T wholes, rather than in
MPH[N terms of aspects

Begins to understand
actions in terms of
long-range goals

professional

N[] Vl [:[experience -

THIS PROGRAM ASSUMES
YOU ARE NOVICE.

LET US LOOK INTO OVERVIEW
OF WHAT WILL BE THE CURRICULUM OF THIS COURSE.

v

aiml@qualitythought.in

?

@

ol GualityThought”

Taete i Pyt

DitaTypes |

Loops g candiionas |
FME{‘“ .‘-W

e o | - W gpie e D

Modusss ano Pactages] P Rt AP ieng Pt

4 ;.H;]F_fl:lfl"” 1 Dode

FogrRgFUkaneni - a p q thon & Unerstanding End o End Appicaton Deglayret

softaare Deveopersenien M sty < MU NYNER-——

Undstanding kgl Projact Miregemen -

- (o §ative Aoicaton Devanpmest
Wizt Senices
R, CURRICULUM witssil
S0 Databaces | - armnitectuE attens
Mo 5, Databizes
Understanding eplcation ey qw
eenma———— e
serom: hont 1 /

WE HAVE ALL THE TOOLS TO MAKE YOU INDUSTRY RELEVANT IN THIS AGE AND TIME.

IT’S YOUR DECISION WHICH IS PENDING.

{auiiding applications for cloud } | python |

| Building Rest APIs ‘ [What We will be learning? | Web Development Basics ‘

[Building Web applications | | Understanding Databases |

v

aiml@qualitythought.in

GualityThought”

l Standard Python]

PyTest

[Packaging and deployments |

PyMongo |—
|Djangc: :

l Django Restful I

What in Python ‘ SQL Alchemy ‘

e

| Concurrency]

AWS
|
| Serverless [Python on Cloud ‘ | Azure /

GCP
[How are we future proof —

Docker

| :) [Microservices ‘
Kubernetes | Containerization

aiml@qualitythought.in

@/‘ Q:),ualityThought®

CURRICULUM

Programming from Absolute Beginning
Intfroduction to Computer Programs

aiml@qualitythought.in

—~ . ®
A brief history of computing Q/\’),ualltyThought

A brief history of programming

What is a program?

Understanding the binary system
Introduction to Programming Languages

Why do we have programming languages?

How programming languages have evolved?

The family tree of programming languages

Translating code into something that the computer understands
Interpreting
Compiling

Syntax and the building blocks of a programming language
Keywords
Operators
Code Blocks
Relations to mathematics

Types of Applications

Standalone applications
Client-Server Applications / -
Web applications &

Mobile Applications
Distributed applications
Cloud-based applications
Software Projects and How We Organize Our Code
Working with software projects
Working with packages to share code
Avoiding conflicts with namespaces
Sequence - The Basic Building Block of a Computer Program
The importance of sequences
Defining the problem
The solution to the problem
Understanding Statements
Compound statements
Separating statements

aiml@qualitythought.in

orking with Data - Variables
Declaring and initializing variables
Primitive data types
Composite type

Program Control Structures

Controlling the execution path
Selection statements
Iteration Statements
Conditional Statements
Selection with the if and switch statement
lteration with the for loop
Iteration with the while loop
Iterating over sequences using for each

Understanding Functions
Deciding what goes into a function
Writing a function
Returning values from a function
Function arguments
Functions in action
Local and global variables

When Things Go Wrong - Bugs and Exceptions
Understanding software bugs
Understanding types of software bugs
Finding bugs using a debugger

Programming Paradigms
Understanding structured programming
Understanding object-oriented programming
Understanding functional programming
Understanding logic programming

aiml@qualitythought.in

GualityThought”

GualityThought”

ogramming Tools and Methodologies
Understanding version control systems
Unit testing
Integration testing
Other types of tests
Software releases
Understanding software deployment
Deployment Automation
Code maintenance

Software deployment process methodologies
Waterfall development
Spiral model
Agile development

Code Quality
Defining code quality
Writing code with readability in mind
o Writing code with efficiency in mind @//

e Practical Version Controlling with Git
e Software defect management using JIRA
e Understanding Agile project Management using Scrum

aiml@qualitythought.in

GualityThought”

froduction to Python
Taste of Python
Mysteries
Little Programs
A Bigger Program
Python in the Real world
Why Python?
Why Not Python?
Installing Python
Running Python
Moment of Zen

Data: Types, Values, Variables, and Names
Python Data are objects

Types
Mutability
Literal Values
Variables /
Assignment |

) &
Variables are Names, Not Places 7

Assigning to Multiple Names
Reassigning a Name

Copying

Choose Good Variable Names

Numbers

Booleans

Integers
Literal Integers
Integer Operations
Integers and Variables
Precedence
Bases
Type Conversions
How Big is inte

Choose with if

aiml@qualitythought.in

GualityThought”

Comment with #

Continue Lines with \

Compare with if, elif and else
What is True

Do Multiple Comparisons with in

Text Strings
Creating with Quotes
Creating with str()
Escape with \
Combine by Using +
Duplicate with +
Get a Character with []
Get a Substring with a Slice
Get Length with len()
Split with strip()
Search and Select

Case / e

Alignment /

Formatting @‘/
Oldstyle: %

New styles: {} and format()
Newest Style: f-string
More String Things

Loop with while and for

Repeat with while
Cancel with break
Skip Ahead with continue
Check break Use with else

lterate with for and in
Cancel with break
Skip Ahead with continue
Check break Use with else
Generate Number Sequences with range()

aiml@qualitythought.in

GualityThought”

Create with Commas and ()
Create with tuple()
Combine Tuples by Using +
Duplicate Items with *
Compare Tuples
Iterate with for and in
Modify a Tuple
Lists
Create with []
Create or Convert with list()
Create from String with split()
Get an Item by [offset]
Get Items with a Slice
Add an item to the End with append()
Add an Item by offset with insert()
Duplicate All items with *
Combine Lists by Using extend() or +
Change an item by [offset |

Change Items with a Slice
Delete an Item by Offset with del / -
Delete an Item by Value with remove() @/

Get an Item by Offset and Delete It with pop()
Delete All items with clear()

Find an Item’s Offset by Value with index()
Test for a Value with in

Count Occurrences of a Value with count()
Convert a List to a String with join()

Reorder Items with sort() or sorted()

Get Length with len()

Assign with =

Copy with copy(), list() or a Slice

Copy everything with deepcopy()
Compare Lists()

Iterate with for and in

Iterate Multiple Sequences with zip()
Create a List with a Comprehension

Tuples vs Lists Dictionaries and Sets
’rionories
Create with {}
Create with dict() /

Convert with dict()

aiml@qualitythought.in

GualityThought”

Add or Change an Item by [key]
Get All Keys with keys()

Get All Values with values()

Get All Key-Value Pairs with items()
Get Length with len()

Combine Dictionaries with {**a, **b}
Combine Dictionaries with update()
Delete an Item by Key with del

Get an Item by Key and Delete it with pop()
Delete All Items with clear()

Assign with =

Copy with copy/()

Copy Everything with deepcopy/()
Compare Dictionaries

Iterate with for and in

Dictionary Comprehensions

Sets
Create with sef()
Convert with seft()
Get Length with len() / B
Add an Item with add() @/

Delete an Item with remove()
I[terate with for and in
Combinations and Operators
Set Comprehensions
Create an Immutable Set with frozenset()
Functions
Define a Function with def
Call a Function with Parentheses
Arguments and Parameters
None is useful
Positional arguments
Keyword Arguments
Specify Default Parameter Values
Dictionaries and Sets

Dictionaries

q Create with {}
k’ Create with dict(

aiml@qualitythought.in

GualityThought”

Get Length with len()
Add an Item with add()
Delete an Item with remove()
Iterate with for and in
Combinations and Operators
Set Comprehensions
Create an Immutable Set with frozenset()
Functions
Define a Function with def
Call a Function with Parentheses
Arguments and Parameters
None is useful
Positional arguments
Keyword Arguments
Specify Default Parameter Values
Convert with dict()
Add or Change an Item by [key]
Get All Keys with keys()

Get All Values with values()
Get All Key-Value Pairs with items() -
Get Length with len() @/

Combine Dictionaries with {**a, **b}
Combine Dictionaries with update()
Delete an Item by Key with del

Get an Item by Key and Delete it with pop()
Delete All Items with clear()

Assign with =

Copy with copy/()

Copy Everything with deepcopy/()
Compare Dictionaries

Iterate with for and in

Dictionary Comprehensions

Explode/Gather Positional Arguments with *
Explode/Gather Keyword Arguments with **
Keyword-only Arguments

Mutable and Immutable Arguments

aiml@qualitythought.in

GualityThought”

Anonymous Functions: lambda
Generators

Decorators

Namespaces and Scope

Uses of _and __in Names
Recursion

Async Functions

Exceptions

Object-Oriented Design
What are Objects?e
Simple Objects
Define a Class with class
Attributes
Methods
Initialization
Inheritance
Inherit from a Parent Class
Override a Method /
Add a Method
Get Help from your Parent with super()
Multiple Inheritance
Mixins
In Self Defense
Attribute Access
Direct Access
Getters and Setters
Properties for Attribute Access
Properties for Computed Values
Name Mangling for privacy
Class and Object Attributes
Method Types
Instance Methods
Class Methods
Static Methods
Duck Typing
(W0 gic Methods
Aggregation and Composition /
When 1o Use Objects or Something else
Named Tuples

aiml@qualitythought.in

GualityThought”

Dataclasses
Attrs

aiml@qualitythought.in

jects Oriented Python

Object Oriented Design
Object-Oriented Design
Infroducing object-oriented
Objects and classes
Specifying attributes and behaviors
Hiding details and creating the public interface
Composition
Inheritance
Case Study

Objects in Python
Objects in python
Creating python classes
Modules and packages
Organizing module content
Who can access my data?¢
Third-party Libraries
Case Study

When Objects are Alike
When Objects are Alike
Basic Inheritance
Multiple Inheritance
Polymorphism
Abstract base classes
Case Study

Exceptions
Raising exceptions
Case Study

When to Use Object-Oriented Programming
When to use Object-Oriented Programming
Treat objects as objects
Adding behaviors to class data with properties
Manager objects
Case Study

Python Data Structures
Python Data Structures
Empty Objects

O Tuples and named Tuples

Data classes /
Dictionaries

Lists

aiml@qualitythought.in

GualityThought”

GualityThought”

Sets
Extending built-in functions
Case Study
Python Object-Oriented Shortcuts
Python Object-Oriented Shortcuts
Python built in functions
An alternative to method overloading
Functions are objects too
Case Study
Strings and Serialization
Strings and Serialization
Strings
Regular expressions
Filesystem paths
Serializing objects
Case Study
The lterator Pattern
The Iterator Pattern
Design patterns in brief
Iterators /
Comprehensions @/
Generators
Coroutines
Case Study
Python Design Patterns
The decorator Pattern
The observer Pattern
The Strategy Pattern
The State Paftern
The Singleton Pattern
The template Pattern
The adapter Pattern
The facade Pattern
The flyweight Pattern
The command Pattern
The abstract factory Pattern
The composite Pattern

Unit testing

aiml@qualitythought.in

Testing with pytest
Imitating expensive objects
How much testing is enough
Case Study
Concurrency
Concurrency
Threads
Multiprocessing
Futures
Aysnc 1O
Case Study

Modules, Packages, and Goodies

Modules and import Statement
Import a Module
Import a Module with Another Name
Import Only What You want from a Module
Packages
The Module Search Path
Relative and Absolute Imports
Namespace Packages
Modules Vs Objects
Goodies in the Python Standard Library
Handle Missing Keys with setdefault() and defaultdict()
Count Items with Counter()
Order by Key with OrderedDict()
Deque
Iterate over Code Structures with itertools
Print Nicely with pprint()
Get Random
More Batteries: Get Other Python Code

Virtual Environments

GualityThought”

Software Testing and Test-Driven Development

etting Started with Software Testing

aiml@qualitythought.in

GualityThought”

Organizing tests
Infroducing test-driven development and unit tests
Test-driven development
Test units
Understanding integration and functional fests
Integration tests
Functional tests
Understanding the testing pyramid and frophy
The testing pyramid
The testing frophy
Testing distributions and coverage
Test Doubles
Introducing test doubles
Using dummy objects
Replacing components with stubs
Checking behaviors with spies
Using mocks
Replacing dependencies with fakes

Understanding acceptance tests and doubles
Managing dependencies with dependency injection / P
Using dependency injection frameworks @/

Test-Driven Development (TDD)
Starting projects with TDD
Building applications, the TDD way
Preventing regressions

Scaling the Test Suite
Scaling tests
Moving e2e to functional
Working with multiple suites
Compile suite
Commit tests
Smoke fests
Carrying out performance tests
Enabling continuous integration
Performance testing

PyTest for Python Testing
Running tests with PyTest

O Writing PyTest fixtures

Using fixtures for dependency injection
ianaging temporary data with tmp_path /
Testing 1/O with capsys

aiml@qualitythought.in

GualityThought”

Running subsets of the tesfsuites
Dynamic and Parametric Tests and Fixtures

Configuring the test suite

Generating fixtures

Generating tests with parametric tests
Using Behavior-driven development

Writing acceptance tests

Writing first test

Defining a feature file

Declaring the scenario

Running the scenario test

Further setup with the And step

Performing actions with the When step

Assessing conditions with the Then step

Embracing specifications by example
PyTest Essential Plugins

PyTest Essential Plugins

Using pytest-cov for coverage reporting

Coverage as a service
Using pytest-benchmark for benchmarking -
Comparing benchmark runs @/

Using flaky to rerun unstable tests
Using pytest-testmon to rerun tests on code changes
Running tests in parallel with pytest-xdist

Managing Test Environments with Tox
Infroducing Tox
Testing multiple python versions with Tox
Using environments for more that Python Versions

Playing with data (text and binary)
Text Strings: Unicode
Python 3 Unicode Strings
UTF-8
Encode
Decode
HTML Entities
O Normalization
TextStrings: Regular Expressions /
ind Exact Beginning Match with match()
Find*kirstMatch with search

aiml@qualitythought.in

Find All Matches with findall()

Split at Matches with split()

Replace at Matches with sub()

Patterns: Special Characters

Patterns: Using specifiers

Patterns: Specifying match() Output
Binary Data

Bytes and bytearray

Convert Binary Data with struct

Other Binary Data Tools

Convert Bytes/String with binascii()

BitOperators

Calendars and Clocks
Leap Year
The datetime module
Using the time module
Read and Write Dates and times
All the Conversions
Alternative Modules

Files and Directories

File Input and Output
Create or Open with open()
Write a Text File with print()
Write a Text File with write()
Read a Text File with read(), readline(), or readlines|)
Write a Binary File with read()
Read a Binary File with read()
Close Files Automatically by using with
Change Position with seek()

Memory Mapping

File Operations
Check existence with exists()
Check Type with isfile()
Copy with copy/()

O Changing Name with rename()

Link with link() or symlink() /

Change permissions with chmod()
Change Ownership with chown()

aiml@qualitythought.in

GualityThought”

GualityThought”

Delete a File with remove()
Directory Operations
Create with mkdir()
Delete with rmdir()
List contents with listdir()
Changing current directory with chdir()
List Matching Files with glob()
Pathnames
ByteslO and StringlO

Processes and Concurrency

Program and Processes
Create a Process with subprocess
Create a Process with multiprocessing
Kill a Process with terminate
Get System Info with os
Get Process Info with psutil

Command Automation

Invoke /
Other Command Helpers |
Concurrency @/
Queues
Processes
Threads
Concurrent.futures
Green Threads and gevent
Twisted
Asyncio
Redis
Beyond Queues
Persistent Storage
Flat Text Files
Padded Text Files
Tabular Text Files
CSV
XML

O HTML

aiml@qualitythought.in

GualityThought”

Configuration Files
Binary Files
Padded Binary Files and Memory Mapping
Spreadsheets
HDF5
TileDB
Relational Databases
SQL
DB-API
SQlLite
MySQL
PostgreSQL
SQLAIchemy
NoSQL Datastores
The dbm Family
Memcached
Redis
Document Databases
Time Series Databases
Graph Databases /
Other NoSQL @/
Full-Text Databases

aiml@qualitythought.in

GualityThought”

etworks
TCP/IP
Networking Patterns
The Request-Reply Pattern
ZeroMQ
Other Mesaging tools
The Publish-Subscribe Pattern
Redis
ZeroMQ
Other Pub-Sub Tools
Internet Services
DNS
Python Email Modules
Web Services and APIS
Data Serialization
Serialize with pickle
Other Serialization Formats
Remote Procedure Calls

XML RPC /
JSON RPC < ///
Zerorpc

gRPC

Twirp

Effective and Performant Python

Pythonic Thinking
Follow PEP 8 Style Guide
Differences between bytes and str
Interpolated F-strings over C-style Format strings and str.format
Writing helper functions instead of complex expressions
Multiple Assignment Unpacking Over Indexing
Prefer enumerate over range
Using zip to process Iterators in Parallel
Avoid Else blocks after for & while loops
Prevent Repetition with Assignment Expressions

i Dictionaries
KnowHow to Slice Sequences /
Avoid Striding and Slicing in a Single Expression

aiml@qualitythought.in

GualityThought”

Sort by Complex Criteria Using the key parameter

Be Cautious when relying on dict insertion Ordering

Prefer get Over in and KeyError to Handle Missing Dictionary Keys

Prefer defaultdict Over setdefault fo Handle Missing Items in Internal State

Know How to Construct Key-Dependent Default Values with __missing__
Functions

Never Unpack more than three variables when functions return multiple values

Prefer Raising exceptions to Returning None

Know How Closures interact with Variable Scope

Reduce Visual Noise with Positional Arguments

Provide Optional Behavior with Keywork Arguments

Use Node and Docstrings to Specify Dynamic Default Arguments

Enforce Clarity with Keyword-Only and Positional-Only Arguments

Define Function Decorators with functools.wraps

Comprehensions and Generators
Use Comprehensions Instead of map and filter
Avoid More Than Two Control Subexpressions in Comprehensions /
Avoid Repeated Work in Comprehensions by Using Assignment Expressions
Consider Generators Instead of Returning Lists
Be Defensive When Iterating Over Arguments
Consider Generator Expressions for Large List Comprehensions
Compose Multiple Generators with yield from
Avoid Injecting Data into Generators with send
Avoid Causing State Transitions in Generators with throw
Consider itertools for Working with Iterators and Generators
Classes and Interfaces
Compose Classes Instead of Nesting Many Levels of Built-in Types
Accept Functions Instead of Classes for Simple Interfaces
Use @classmethod Polymorphism to Construct Objects Generically
Initialize Parent Classes with super
Consider Composing Functionality with Mix-in Classes
Prefer Public Attributes Over Private Ones
Inherit from collections.abc for Custom Container Types
Me u-) sses and Attributes
- e Plain Attributes Instead of Setter cmd Getter Mefhio?

aiml@qualitythought.in

P . ®
Use __getattr__, __getattribute__, and __setattr__ for Lazy &ledésl ItyT h ou g ht

Validate Subclasses with __init_subclass__

Register Class Existence with __init_subclass__

Annotate Class Attributes with __set_name__

Prefer Class Decorators Over Metaclasses for Composable Class Extensions
Concurrency and Parallelism

Use subprocess to Manage Child Processes

Use Threads for Blocking I/O, Avoid for Parallelism

Use Lock to Prevent Data Races in Threads

Use Queue to Coordinate Work Between Threads

Know How to Recognhize When Concurrency Is Necessary

Avoid Creating New Thread Instances for On-demand Fan-out

Understand How Using Queue for Concurrency Requires Refactoring

Consider ThreadPoolExecutor When Threads Are Necessary for Concurrency

Achieve Highly Concurrent I/O with Coroutines

Know How to Port Threaded I/O to asyncio

Mix Threads and Coroutines to Ease the Transition to asyncio

Avoid Blocking the asyncio Event Loop to Maximize Responsiveness /

Consider concurrent.futures for True Parallelism
Robustness and Performance

Take Advantage of Each Block in try/except/else/finally

Consider contextlio and with Statements for Reusable try/finally Behavior

Use datetime Instead of time for Local Clocks

Make pickle Reliable with copyreg

Use decimal When Precision Is Paramount

Profile Before Optimizing

Prefer deque for Producer& Consumer Queues for Producer-Consumer Queues

Consider Searching Sorted Sequences with bisect

Know How to Use heapq for Priority Queues

Consider memoryview and bytearray for Zero-Copy Interactions with bytes

Testing and Debugging
Use repr Strings for Debugging Output
~erify Related Behaviors in TestCase Subclasses
olate Tests from Each Other with setUp, tearDown, se;yw\odule, and

Use Mocks to Test Code with Complex Dependencies

aiml@qualitythought.in

uality Thought”

Encapsulate Dependencies to Facilitate Mocking and Tesgg

Consider Interactive Debugging with pdb

Use tfracemalloc to Understand Memory Usage and Leaks
Collaboration

Know Where to Find Community-Built Modules

Use Virtual Environments for Isolated and Reproducible Dependencies

Write Docstrings for Every Function, Class, and Module

Use Packages to Organize Modules and Provide Stable APIs

Consider Module-Scoped Code to Configure Deployment Environments

Define a Root Exception to Insulate Callers from APIs

Know How to Break Circular Dependencies

Consider warnings to Refactor and Migrate Usage

Consider Static Analysis via typing to Obviate Bugs

Understanding Performant Python

The Fundamental Computer System
Computing Units

Memory Units
Communications Layers -
Putting the Fundamental Elements Together C

Idealized Computing Versus the Python Virtual Machine
So Why Use Python?
How to Be a Highly Performant Programmer

Good Working Practices

Asynchronous I/O
Infroduction to Asynchronous Programming
How Does async/await Work?2
Serial Crawler
Gevent
Tornado
Aiohttp
Shared CPU-I/O Workload
Serial
Batched Results
q Full Async
Profil o Find Bottlenecks
Profiling Efficiently /
Intfroducing the Julia Set

aiml@qualitythought.in

GualityThought”

Calculating the Full Julia Set

Simple Approaches to Timing—yprint and a Decorator
Simple Timing Using the Unix time Command

Using the cProfile Module

Visualizing cProfile Output with SnakeViz

Using line_profiler for Line-by-Line Measurements
Using memory_profiler to Diagnose Memory Usage
Introspecting an Existing Process with PySpy

Bytecode: Under the Hood
Using the dis Module to Examine CPython Bytecode
Different Approaches, Different Complexity
Unit Testing During Optimization to Maintain Correctness
No-op @profile Decorator
Strategies to Profile Your Code Successfully

The multiprocessing Module

An Overview of the multiprocessing Module
Estimating Pi Using the Monte Carlo Method /
Estimating Pi Using Processes and Threads Cl

Using Python Objects
Replacing multiprocessing with Joblib
Random Numbers in Parallel Systems
Using numpy
Finding Prime Numbers
Queues of Work
Verifying Primes Using Interprocess Communication
Serial Solution
Naive Pool Solution
A Less Naive Pool Solution
Using Manager.Value as a Flag
Using Redis as a Flag
Using RawValue as a Flag
Using mmap as a Flag
Using mmap as a Flag Redux
Sharing numpy Data with multiprocessing
chronizing File and Variable Access

File Locking \ /
Locking a Value

aiml@qualitythought.in

GualityThought”

ing Less RAM

Lessons from the Field

Web applications and Services
HTML Web Development

CSS

JavaScript

SQL Databases (mysql)

NoSQL Databases (mongo db)

SQL Databases and Python (SQLAIchemy)
NoSQL Databases and Python (PyMongo)
Responsive Web Design

ReactJS

aiml@qualitythought.in

—_— ®
Quality Thought
niroduction to Django ~

Introduction
Scaffolding a Django Project and App
Creating a Project and App, and Starting the Dev Server
Model View Template
Models
Views
Templates
MVT in Practice
Infroduction to HTTP
Processing a Request
Django Project
The myproject Directory
Django Development Server

Django Apps

PyCharm Setup

Project Setup in PyCharm

View Details /
URL Mapping Detail &

Writing a View and Mapping a URL to It
GET, POST, and QueryDict Objects
Exploring GET Values and QueryDict
Exploring Django Settings
Using Settings in Your Code
Finding HTML Templates in App Directories
Creating a Templates Directory and a Base Template
Rendering a Template with the render Function
Rendering a Template in a View
Rendering Variables in Templates
Using Variables in Templates
Debugging and Dealing with Errors
Exceptions
Generating and Viewing Exceptions
Debugging
o’ring a Site Welcome Screen

Models and
Infroductio

aiml@qualitythought.in

Databases QualltyThoug ht®

Relational Databases
Non-Relational Databases
Database Operations Using SQL
Data Types in Relational databases
SQL CRUD Operations
SQL Create Operations
SQL Read Operations
SQL Update Operations
SQL Delete Operations
Django ORM
Database Configuration and Creating Django Applications
Django Apps
Django Migration
Creating Django Models and Migrations
Field Types
Field Options
Primary Keys
Relationships
One-to-One /
Many-to-One
Many-to-Many
Django’s Database CRUD Operations

URL Mapping, View and Templates
Function Based Views
Class Based Views
URL Configuration
Templates
Django Template Language
Template Variables

Template Inheritance
Template Styling with Bootstrap

Introduction to Django Admin
pfroduction
o’ring a Superuser Account
CRUD.Operations Using Django Admin App /
Registering the Model

aiml@qualitythought.in

GualityThought”

Customizing the Admin Interfaces
erving Static Files
Introduction
Static File Finders
AppDirectoriesFinder
Static File Namespacing
FileSystemFinder
Custom Storage Engines
Forms
Introduction
The <form> element
Types of Input
Form Security with Cross-Site Forgery Protection
Accessing Data in the View
Choosing b/w GET and POST
Django Form’s Library
Validating Forms & Reftrieving Python Values
Advanced Form Validation and Model Forms /
Infroduction 7

Custom Field Validation & Cleaning

Media Serving and File Uploads
Setting up Media Uploads & Serving

Context Processors & using MEDIA_URL in Templates

File Uploads using HTML Forms
Storing Files on Model Instances

aiml@qualitythought.in

ssions and Authentication
Middleware Modules
Implementing Authentication Views & Templates
Password Storage in Django
The Profile Page and request.user in Django
Authentication Decorators & Redirection
Enhancing Templates with Authentication Data
Session Engine
Pickle or JSON Storage
Storing Data in Sessions

Advanced Django Admin & Customizations
Customizing Admin Site
Adding Views to the Admin Site
Advanced Templating & Class Based Views
Template Filters
Custom Template Filters
Template Tags
Django Views
Class Based Views
Generating CSV PDF and Other Binary Files
Working with Python’s CSV Module
Working with Excel Files in Python
Working with PDF files in Python
Playing with Graphs in Python
Integrating Visualizations with Django
Testing
Automation Testing
Testing in Django
Testing Django Models
Testing Django Views
Django Request Factory
Test Case Classes in Django
Using Frontend JavasScript Libraries with Django
~JavaScript Frameworks

Redct and its Components /

aiml@qualitythought.in

GualityThought”

—_— ®
Introduction to Django RESTful Web Services @ualltyThoug ht

Installing the Required Software and Tools

Creating a virtual environment with Python 3.x and PEP 405

Installing Django and Django REST frameworks in an isolated environment
Creating an app with Django

Installing tools

Working with Models, Migrations, Serialization and Deserialization
Working with Models, Migrations, Serialization, and Deserialization
Defining the requirements for our first RESTful Web Service
Creating our first model
Running our initial migration
Analyzing the database
Controlling, serialization, and deserialization
Working with the Django shell and diving deeply into serialization and deserialization

Creating API Views
Creating API Views
Creating Django views combined with serializer classes /
Understanding CRUD operations with Django views and the request methods @/
Routing URLs to Django views and functions
Launching Django's development server
Making HTTP POST requests with Postman

Using Generalized Behavior from the APIView Class

Using Generalized Behavior from the APIView Class

Taking advantage of model serializers

Understanding accepted and returned content types

Making unsupported HTTP OPTIONS requests with command-line tools
Understanding decorators that work as wrappers

Using decorators to enable different parsers and renderers

Taking advantage of content negotiation classes

Making supported HTTP OPTIONS requests with command-line tools
Working with different content types

Sending HTTP requests with unsupported HTTP verbs

Understanding and Customizing Browsable API Fea’rure/
Understanding and Customizing the Browsable API Feature

aiml@qualitythought.in

GualityThought”

Understanding the possibility of rendering text/HTML content
Using a web browser to work with our web service

Making HTTP GET requests with the browsable API

Making HTTP POST requests with the browsable API

Making HTTP PUT requests with the browsable API

Making HTTP OPTIONS requests with the browsable API
Making HTTP DELETE requests with the browsable API

Working with Advanced Relationships and Serialization
Working with Advanced Relationships and Serialization
Defining the requirements for a complex RESTful Web Service
Creating a new app with Django
Configuring a new web service
Defining many-to-one relationships with models.ForeignKey

Installing PostgreSQL

Running migrations that generate relationships
Analyzing the database /
Configuring serialization and deserialization with relationships @/

Defining hyperlinks with serializers.HyperlinkedModelSerializer
Working with class-based views

Taking advantage of generic classes and viewsets

Generalizing and mixing behavior

Working with routing and endpoints

Making requests that interact with resources that have relationships

Using Constraints, Filtering, Searching, Ordering and Pagination
Using Constraints, Filtering, Searching, Ordering, and Pagination
Browsing the API with resources and relationships
Defining unique constraints
Working with unique constraints
Understanding pagination
Configuring pagination classes
Making requests that paginate results

rking with customized pagination classes
Making requests that use customized paginated results
Configuring filter backend classes /
Adding filtering, searching, and ordering

aiml@qualitythought.in

GualityThought”

Working with different types of Django filters
Making requests that filter results

Composing requests that filter and order results
Making requests that perform starts with searches
Using the browsable API to test pagination, filtering, searching, and ordering

Securing the API with Authentication and Permissions
Securing the API with Authentication and Permissions

Understanding authentication and permissions in Django, the Django REST framework,
and RESTful Web Services

Learning about the authentication classes

Including security and permissions-related data to models

Working with object-level permissions via customized permission classes
Saving information about users that make requests

Setting permission policies

Creating the superuser for Django

Creating a user for Django

Making authenticated requests /
Making authenticated HTTP PATCH requests with Postman

Browsing the secured API with the required authentication
Working with token-based authentication

Generating and using tokens

Applying Throttling Rules and Versioning Management
Applying Throttling Rules and Versioning Management
Understanding the importance of throttling rules
Learning the purpose of the different throttling classes in the Django REST framework
Configuring throttling policies in the Django REST framework
Running tests to check that throttling policies work as expected
Understanding versioning classes
Configuring a versioning scheme
Running tests to check that versioning works as expected

Automated Tests
Automating Tests
Q ting ready for unit testing with pytest
Writing unit fests for a RESTiul Web Service /
Discovering and running unit tests with pytest

aiml@qualitythought.in

GualityThought”

Running unit tests again with pytest
vilding APIs using Flask

Introduction

Understanding API

RESTful API

REST Constraints/Principles

HTTP Protocol

HTTP Methods and CRUD

The JSON Format

HTTP Status Codes
Commonly used HTTP Status Codes
Open API
The Flask Web Framework
Building a Simple Recipe Management Application
Virtual Environment
Using curl or httpie to Test All the Endpoints

Postman
The Postman GUI
Sending a GET Request /
Sending a POST Request &

Saving a Request

Introduction to Flask

What is Flask-RESTful?

Virtual Environment

Creating a Recipe Model

Configuring Endpoints

Making HTTP Requests to the Flask API using curl and httpie
Manipulating Database using SQL Alchemy

Databases

Database Management System

SQL

ORM

Defining Our Models

Password Hashing
Authentication Services and Security with JWT

v

aiml@qualitythought.in

GualityThought”

The User Logout Mechanism

Object Serialization with marshmallow
Serialization versus Deserialization
marshmallow
A Simple Schema

Field Validation

Customizing Deserialization Methods
UserSchema Design
RecipeSchema Design
The PATCH Method

Working with Images

Working with Notifications

Pagination, Searching and Ordering

Deploying the applications to virtual machines

Deploying the applications to Docker and building Docker-Compose

Cloud Native and Microservices with Python /
What are Microservices
Microservices At a Glance
Key Concepts of Microservices
Independently Deployability
Modelled Around a Business Domain
Owning Their Own State
Size
Flexibility
Alignment of Architecture and Organization
The Monolith
The Single-Process Monolith
The Modular Monolith
The Distributed Monolith
Monoliths and Delivery Contention
Advantages of Monoliths
Enabling Technology
Log Aggregation and Distributed Tracing
O Containers and Kubernetes

Streaming
Rublic Cloud and Serverless /

Advantages of Microservices

aiml@qualitythought.in

GualityThought”

Technology Heterogeneity
Robustness
Scaling
Ease of Deployment
Organizational Alignment
Composability
Microservice Pain Points

Developer Experience
Technology Overload
Reporting
Monitoring and Troubleshooting
Security
Testing
Latency
Data Consistency

Should | Use Microservices?

How to model microservices

What Makes a Good Microservice Boundary? /
Information Hiding -
Cohesion &
Coupling

The Interplay of Coupling And Cohesion
Types Of Coupling
Domain Coupling
Pass Through Coupling
Common Coupling
Content Coupling
Alternatives to Domain-Oriented Decomposition
Volatility
Data
Technology
Organizational
Different Goals, Different Drivers
Mixing Models And Exceptions
Just Enough Domain-Driven Design
Ubiquitous Language

O Aggregate

Bounded Context

aiml@qualitythought.in

GualityThought”

The Dangers Of Premature Decomposition
Communication in Terms of Business Concepts
Event-storming
Logistics
The Process
Microservice Communication Styles
From In-Process To Inter-Process
Performance
Changing Interfaces
Error handling
Technology for Inter-process Communication: So Many Choices
Styles of Microservice Communication
Pattern: Synchronous Blocking
Advantages
Disadvantages
Where To Use It
Pattern: Asynchronous Non-blocking
Advantages
Disadvantages / e
Where To Use It /
Pattern: Communication Through Common Data
Advantages
Disadvantages
Where To Use It
Patftern: Request-Response Communication
Implementation: Synchronous vs Asynchronous
Where To Use It
Pattern: Event-Driven Communication
Implementation
What's In An Evente
Did It Worke
Implementing Microservice Communication
Make Backwards Compatibility Easy
Make Your Interface Explicit
Keep Your APIs Technology-Agnostic
Make Your Service Simple for Consumers
e Internal Implementation Detail

7

aiml@qualitythought.in

REST

Local Calls Are Not Like Remote Calls
Brittleness
Where To Use It

REST and HTTP

Hypermedia As the Engine of Application State
Challenges

Where To Use It

GraphQL

Challenges
Where To Use It

Message Brokers

Topics and Queues
Guaranteed Delivery
Trust

Other Characteristics
Choices

Kafka

Serialization Formats

Textual Formats
Binary Formats

Schemas

Structural vs Semantic Contract Breakages
Should You Use Schemas?

Handling Change Between Microservices
Avoiding Breaking Changes

Expansion Changes

Tolerant Reader

Right Technology

Explicit Interface

Catch Accidental Breaking Changes Early

Managing Breaking Changes

Lock-Step Deployment
Coexist Incompatible Microservice Versions
Emulate The Old Interface
Which Approach Do | Preferg
The Social Contract
Tracking Usage
freme Measures

he Perils of Code Reuse in a Microservice World

v

aiml@qualitythought.in

GualityThought”

—_— . ®
Sharing Code Via Libraries Qu al |tyTh0 u g ht
Workflow
Transactions
ACID Transactions
Still ACID, but Lacking Atomicity?
Two-Phase Commits
Distributed Transactions—Just Say No
Sagas
Saga Failure Modes
Implementing Sagas
Sagas Versus Distributed Transactions
Build
A Brief Introduction to Continuous Integration
Are You Really Doing CI¢

Branching Models
Build Pipelines and Continuous Delivery

Tooling

Tradeoffs and Environments

Artifact Creation / -
Mapping Source Code and Builds to Microservices @‘/

One Giant Repo, One Giant Build
Pattern: One Repository Per Microservice (aka Multi-Repo)
Pattern: Monorepo
Which Approach Would | Use¢
Deployment
From Logical to Physical
Multiple Instances
The Database
Environments
Principles Of Microservice Deployment
Isolated Execution
Focus On Automation
Infrastructure As Code
Zero-downtime Deployment
Desired State Management
Deployment Options

O Physical Machines

Virtual Machines /

aiml@qualitythought.in

GualityThought”

Platform As A Service (PAAS)
Function As A Service (FAAS)

Which Deployment Option Is Right For You?
Kubernetes & Container Orchestration
The Case For Container Orchestration
A Simplified View Of Kubernetes Concepts
Multi-Tenancy and Federation
The Cloud Native Computing Federation
Platforms and Portability
Helm, Operations and CRDs, oh my!
And Knative
The Future
Should You Use Ite
Progressive Delivery
Separating Deployment From Release
On To Progressive Delivery
Feature Toggles

Canary Release
Parallel Run / o
Testing From Monitoring to Observability &

Infroduction to cloud computing

Software as a Service
Platform as a Service
Infrastructure as a Service
The cloud native concepts
Cloud native - what it means and why it matters?
The cloud native runtimes
Cloud native architecture
Are microservices a new concept?e
Why is Python the best choice for cloud native microservices development?
Understanding the twelve-factor app
Building Microservices in Python
Python concepts Revisited
Modules
Functions

aiml@qualitythought.in

_— . ®
GET /api/v1/users Qua|ltyTh0ught

GET /api/v1/users/[user_id]
POST /api/v1/users
DELETE /api/v1/users
PUT /api/v1/users
Building resource tweets methods
GET /api/v2/tweets
POST /api/v2/tweets
GET /api/v2/tweets/[id]
Testing the RESTful API
Unit testing
Building a Web Application in Python
Getting started with applications
Creating application users
Working with Observables and AJAX
Binding data for the adduser template
Creating tweets from users
Working on Observables with AJAX for the addtweet template
Data binding for the addtweet template /
CORS - Cross-Origin Resource Sharing
Session management

Interacting Data Services

MongoDB - How it is advantageous, and why are we using it?
MongoDB terminology
Setting up MongoDB
Initializing the MongoDB database
Integrating microservices with MongoDB
Working with user resources
Working with the tweets resources

Building WebViews with React

Understanding React

Setting up the React environment
Installing node
Creating package.json

Building webViews with React
) . o .

Integrating webView with microservices

User authentication /

Login user

aiml@qualitythought.in

GualityThought”

Sign up user
User profile
Log out users
Testing the React webViews

Creating Uls to Scale with Flux
Understanding Flux
Flux concepts
Adding dates to Ul
Building user interfaces to Flux
Actions and dispafcher

Learning Event Sourcing and CQRS (Kafka)
Securing the Web application
Dockerizing Services

Implementing and Deploying on the AWS Platform
Implementing and Deploying on the Azure Platform
Implementing and Deploying on the GCP Platform /

Using Python to Implement Serverless on AWS, Azure and GCP

aiml@qualitythought.in

